翻訳と辞書
Words near each other
・ Normal science
・ Normal score
・ Normal section
・ Normal sequence
・ Normal shock tables
・ Normal space
・ Normal Square, Pennsylvania
・ Normal Station, Memphis
・ Normal subgroup
・ Normal surface
・ Normal tension glaucoma
・ Normal Theater
・ Normal Township
・ Normal Township, McLean County, Illinois
・ Normal type
Normal variance-mean mixture
・ Normal weight obesity
・ Normal yield (agriculture)
・ Normal Young Man
・ Normal!
・ Normal, Alabama
・ Normal, Illinois
・ Normal, Indiana
・ Normal, Kentucky
・ Normal, Ohio
・ Normal-exponential-gamma distribution
・ Normal-form game
・ Normal-gamma distribution
・ Normal-inverse Gaussian distribution
・ Normal-inverse-gamma distribution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Normal variance-mean mixture : ウィキペディア英語版
Normal variance-mean mixture
In probability theory and statistics, a normal variance-mean mixture with mixing probability density g is the continuous probability distribution of a random variable Y of the form
:Y=\alpha + \beta V+\sigma \sqrtX,
where \alpha, \beta and \sigma > 0 are real numbers, and random variables X and V are independent, X is normally distributed with mean zero and variance one, and V is continuously distributed on the positive half-axis with probability density function g. The conditional distribution of Y given V is thus a normal distribution with mean \alpha + \beta V and variance \sigma^2 V. A normal variance-mean mixture can be thought of as the distribution of a certain quantity in an inhomogeneous population consisting of many different normal distributed subpopulations. It is the distribution of the position of a Wiener process (Brownian motion) with drift \beta and infinitesimal variance \sigma^2 observed at a random time point independent of the Wiener process and with probability density function g. An important example of normal variance-mean mixtures is the generalised hyperbolic distribution in which the mixing distribution is the generalized inverse Gaussian distribution.
The probability density function of a normal variance-mean mixture with mixing probability density g is
:f(x) = \int_0^\infty \frac \right) g(v) \, dv
and its moment generating function is
:M(s) = \exp(\alpha s) \, M_g \left(\beta s + \frac12 \sigma^2 s^2 \right),
where M_g is the moment generating function of the probability distribution with density function g, i.e.
:M_g(s) = E\left(\exp( s V)\right) = \int_0^\infty \exp(s v) g(v) \, dv.
==See also==
:
*Normal-inverse Gaussian distribution

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Normal variance-mean mixture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.